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Basic Information of DDC

● Drone navigation competition
● Objective: Reach Goal (x > 60) w/o clashing obstacles 

○ Success rate, goal time
● Benchmark for autonomous drone navigation
● 3 learning level (easy,medium,hard)

Champion at state-based category

medium hard

Obstacle



Initial RL Setting offered by the DDC organizers

State dimension

10 obstacles’ 
Center & size

40 (=10*(3+1))

desired velocity 3

orientation, velocity 9+3

sum 55

Action dimension

Bodyrate(ω) 3

full thrust 1

sum 4

Reward

survive reword

collision penalty

velocity penalty 
(linear&angular) 

Our method is Reinforcement Learning(RL) based approach 

ActionDrone
environment

State
Reward



Main changes from Initial Code

State:

- Obstacle information: polar voxel

Reward:

- reward by moving x direction
- penalty when approaching boundary
- eliminate survive reward

- disturb moving x direction (stay initial position)

learn only in medium environment:

- learn in hard -> move slowly

State dimension

Obstacle (Polar voxel) 64 (= 8*8)

distance from boundary(y,z) 2+2

position,attitude, (linear angular) velocity 3+3+9+3

goal velocity 3

Sum 89

Reward

x move reward

boundary penalty

collision penalty



Create Polar Voxels

y_b

x_b
range -45deg ~ 45 deg

Cuts 8

Output 
dimension

8*8 = 64

φ,θ’s characteristic

Algorithm
1. set direction (φ, θ)
2. extend straight line in 1’s 

direction
3. calculate distance from 

closest obstacle
4. do 1~3 in different direction

φ θ

z_b

x_b



Create Polar voxels

Why θ,φ is -45deg ~ 45deg?
- In most flight, |α|< 45deg
- Quadrotor needs only obstacles’ info in velocity’s direction if obstacle is static

-> Not think about other obstacles’ info

interpretation of our method
Check various direction’s obstacle 
≃ think about desired moving direction  
(Cf. topological path search)

x_b

velocity
α

angle between x_b and velocity

Robert Penicka et al. “Minimum-Time Quadrotor 
Waypoint Flight in Cluttered Environments” (2022)



Flying Result (submission policy)

Test 100 times

medium

Goal rate: 77

Failure: collide:16, bound: 7, time: <10s

hard

Goal rate: 26

Failure: collide:65, bound: 9 

http://www.youtube.com/watch?v=mYyGmGP9ZS8


Ideas which do not work well

- Increasing viewing angle
- because quadrotor collides on their side
- φ, θ: -45~45 deg -> -90~90 deg
- due to too Large dimension of obstacle, or Sparse voxel

- Curriculum Leaning (by Jeffrey Elman)

- Firstly, learn at medium level (submission code)
- Learn hard level based with same NN weights

- pros: increase success rate only in hard environment
- cons: decrease success rate in medium, and low velocity in both environment

φ

φ



Vision Based approach

Method

- same policy in state-based
- Make voxel by depth image

Results

goal rate: 6/10 (medium)

Problems

- affect ground in depth sensor
- quadrotor assume ground as obstacle
- drones rise

- depth image lack necessary information for 
voxel production

- Increase FOV -> 
- Worse performance
- Worse of depth data in quadrotor direction

State Based

center
&size

drone
voxel

Policy

Vision Based

depth
im

age

drone
voxel

Policyobstacle obstacle

depth pick up based on (θ,φ)

http://www.youtube.com/watch?v=KNOC4Iv1I-4


Future works

- Compress Obstacle information by CNN
- increase input vision dimension, and FOV

- helpful to avoid obstacle from their side
- can use voxel position relasionship
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Future works

- Input time-series obstacle information
- Now, agent don’t know obstacle velocity, and mainly hits moving obstacles

- POMDP (cf. Pong) 
- harder than MDP

- Implementing sliding window / RNN

?

Pong

?

DDC

?

?



Implement to real quadrotor

Implementation difficulty

- Unexplainable, unexpected flight by slight difference
- 77/100 success on my PC ->1/3 success in the competition
- 77/100 state-based -> 6/10 vision-based



Implement to real quadrotor

How to solve?

- Get NN based parameter model from real quadrotor for simulator (Jemin Hwangbo et al. Learning 

Agile and Dynamic Motor Skills for Legged Robots)

- Learning by cheating
- Learn in many observation space(e.g. obstacles), Reduce observation in real quadrotor

- Dynamic balancing Model (Junhyeok Ahn et al. “Data-Efficient and Safe Learning for Humanoid Locomotion Aided by a Dynamic Balancing Model”)

- set safety guaranteeing policy design
- Change action space to higher level

- Eliminate unsafe, unrealistic flight
- tradeoff of dynamic movement

- Mixed reality framework (Alessanrdo Devo, et al. “Autonomous Single-Image Drone Exploration With Deep Reinforcement Learning and Mixed Reality”)

- convert real states to simulation engine
- Simulate with noisy observation, time delay

ANYmal
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