
Methods In DDC
Haruki Kozuka
JSK robotics

Who we are

Kento Kawaharazuka
Assistant Professor

Haruki Kozuka
Master student

JSK robotics Lab,
The university of TokyoMoju Zhao

Dragons’ guy

Table Of Contents

- What is DDC?
- Initial Settings
- Submission Code

- Main Changes in our methods
- Polar voxel

- Results
- Vision Based approach
- Implement to real quadrotor

http://www.youtube.com/watch?v=mYyGmGP9ZS8&t=3

Basic Information of DDC

● Drone navigation competition
● Objective: Reach Goal (x > 60) w/o clashing obstacles

○ Success rate, goal time
● Benchmark for autonomous drone navigation
● 3 learning level (easy,medium,hard)

Champion at state-based category

medium hard

Obstacle

Initial RL Setting offered by the DDC organizers

State dimension

10 obstacles’
Center & size

40 (=10*(3+1))

desired velocity 3

orientation, velocity 9+3

sum 55

Action dimension

Bodyrate(ω) 3

full thrust 1

sum 4

Reward

survive reword

collision penalty

velocity penalty
(linear&angular)

Our method is Reinforcement Learning(RL) based approach

ActionDrone
environment

State
Reward

Main changes from Initial Code

State:

- Obstacle information: polar voxel

Reward:

- reward by moving x direction
- penalty when approaching boundary
- eliminate survive reward

- disturb moving x direction (stay initial position)

learn only in medium environment:

- learn in hard -> move slowly

State dimension

Obstacle (Polar voxel) 64 (= 8*8)

distance from boundary(y,z) 2+2

position,attitude, (linear angular) velocity 3+3+9+3

goal velocity 3

Sum 89

Reward

x move reward

boundary penalty

collision penalty

Create Polar Voxels

y_b

x_b
range -45deg ~ 45 deg

Cuts 8

Output
dimension

8*8 = 64

φ,θ’s characteristic

Algorithm
1. set direction (φ, θ)
2. extend straight line in 1’s

direction
3. calculate distance from

closest obstacle
4. do 1~3 in different direction

φ θ

z_b

x_b

Create Polar voxels

Why θ,φ is -45deg ~ 45deg?
- In most flight, |α|< 45deg
- Quadrotor needs only obstacles’ info in velocity’s direction if obstacle is static

-> Not think about other obstacles’ info

interpretation of our method
Check various direction’s obstacle
≃ think about desired moving direction
(Cf. topological path search)

x_b

velocity
α

angle between x_b and velocity

Robert Penicka et al. “Minimum-Time Quadrotor
Waypoint Flight in Cluttered Environments” (2022)

Flying Result (submission policy)

Test 100 times

medium

Goal rate: 77

Failure: collide:16, bound: 7, time: <10s

hard

Goal rate: 26

Failure: collide:65, bound: 9

http://www.youtube.com/watch?v=mYyGmGP9ZS8

Ideas which do not work well

- Increasing viewing angle
- because quadrotor collides on their side
- φ, θ: -45~45 deg -> -90~90 deg
- due to too Large dimension of obstacle, or Sparse voxel

- Curriculum Leaning (by Jeffrey Elman)

- Firstly, learn at medium level (submission code)
- Learn hard level based with same NN weights

- pros: increase success rate only in hard environment
- cons: decrease success rate in medium, and low velocity in both environment

φ

φ

Vision Based approach

Method

- same policy in state-based
- Make voxel by depth image

Results

goal rate: 6/10 (medium)

Problems

- affect ground in depth sensor
- quadrotor assume ground as obstacle
- drones rise

- depth image lack necessary information for
voxel production

- Increase FOV ->
- Worse performance
- Worse of depth data in quadrotor direction

State Based

center
&size

drone
voxel

Policy

Vision Based

depth
im

age

drone
voxel

Policyobstacle obstacle

depth pick up based on (θ,φ)

http://www.youtube.com/watch?v=KNOC4Iv1I-4

Future works

- Compress Obstacle information by CNN
- increase input vision dimension, and FOV

- helpful to avoid obstacle from their side
- can use voxel position relasionship

drone
obstacle

MLP

action

drone
obstacle

MLP

actionC
N

N

Now

(25)

(64)

(25)

(256) (32)

Plan

Future works

- Input time-series obstacle information
- Now, agent don’t know obstacle velocity, and mainly hits moving obstacles

- POMDP (cf. Pong)
- harder than MDP

- Implementing sliding window / RNN

?

Pong

?

DDC

?

?

Implement to real quadrotor

Implementation difficulty

- Unexplainable, unexpected flight by slight difference
- 77/100 success on my PC ->1/3 success in the competition
- 77/100 state-based -> 6/10 vision-based

Implement to real quadrotor

How to solve?

- Get NN based parameter model from real quadrotor for simulator (Jemin Hwangbo et al. Learning

Agile and Dynamic Motor Skills for Legged Robots)

- Learning by cheating
- Learn in many observation space(e.g. obstacles), Reduce observation in real quadrotor

- Dynamic balancing Model (Junhyeok Ahn et al. “Data-Efficient and Safe Learning for Humanoid Locomotion Aided by a Dynamic Balancing Model”)

- set safety guaranteeing policy design
- Change action space to higher level

- Eliminate unsafe, unrealistic flight
- tradeoff of dynamic movement

- Mixed reality framework (Alessanrdo Devo, et al. “Autonomous Single-Image Drone Exploration With Deep Reinforcement Learning and Mixed Reality”)

- convert real states to simulation engine
- Simulate with noisy observation, time delay

ANYmal

Table Of Contents

- What is DDC?
- Initial Settings
- Changes in our methods

- Polar voxel
- Results
- Vision Based approach
- Impriment to real quadrotor

y_b

x_b

φ

